AISim
  • 1. Market Background
    • 1.1 Development Prospects
    • 1.2 Potential Challenges
  • 2. AISim: The World’s First Web3 IoE Network
    • 2.1 AIA Protocol (AISim Intelligent Access Protocol)
    • 2.2 Decentralized Identity Authentication (DID) System
    • 2.3 Distributed AI Acceleration Engine
    • 2.4 Intelligent Privacy Computing Module
    • 2.5 DeAI Client (Decentralized AI Client)
    • 2.6 IoE Data Management and Intelligent Caching System
  • 3. Technical Architecture
    • 3.1 AIA Protocol
      • 3.1.1 Protocol Adaptation Layer
      • 3.1.2 Distributed Task Scheduling Engine
      • 3.1.3 Decentralized Communication Network
      • 3.1.4 Cross-layer Data Encryption and Privacy Protection
      • 3.1.5 Dynamic Resource Scheduling and Optimization
    • 3.2 Distributed AI Acceleration
      • 3.2.1 Edge Node Computing Optimization
      • 3.2.2 Multi-Node Distributed Execution
      • 3.2.3 Privacy-Preserving Collaborative Training
    • 3.3 Decentralized Identity and Access Management
      • 3.3.1 Identity Verification and Access Level Grading
      • 3.3.2 Multi-level Data Protection
  • 4. Application Scenario
    • 4.1 Smart Healthcare and Health Management
    • 4.2 Autonomous Driving and Intelligent Transportation
    • 4.3 Agricultural Internet of Things and Precision Agriculture
    • 4.4 Industrial Automation and Intelligent Manufacturing
    • 4.5 Smart City and Public Services
    • 4.6 Edge Computing and Distributed AI
  • 5. IoE Web3 Ecosystem Construction
    • 5.1 DID Physical Nodes
      • 5.1.1 Types of Smart SIM Cards
      • 5.1.2 Rights of DID Physical Nodes
    • 5.2 MVNO Integration
    • 5.3 Ecosystem Incentives
  • 6. Tokenomics
    • 6.1 Token Distribution
    • 6.2 AST Token Use Cases
  • 7.Roadmap
Powered by GitBook
On this page
  1. 3. Technical Architecture
  2. 3.2 Distributed AI Acceleration

3.2.2 Multi-Node Distributed Execution

By distributing the execution of tasks across multiple nodes, AISim can break down computational tasks for parallel processing. This mechanism supports the horizontal scalability of distributed computing, enabling the system to efficiently handle large-scale computational tasks. At the same time, AISim can intelligently adjust task allocation based on computational requirements and node performance, enhancing computational efficiency.

Previous3.2.1 Edge Node Computing OptimizationNext3.2.3 Privacy-Preserving Collaborative Training

Last updated 4 months ago