AISim
  • 1. Market Background
    • 1.1 Development Prospects
    • 1.2 Potential Challenges
  • 2. AISim: The World’s First Web3 IoE Network
    • 2.1 AIA Protocol (AISim Intelligent Access Protocol)
    • 2.2 Decentralized Identity Authentication (DID) System
    • 2.3 Distributed AI Acceleration Engine
    • 2.4 Intelligent Privacy Computing Module
    • 2.5 DeAI Client (Decentralized AI Client)
    • 2.6 IoE Data Management and Intelligent Caching System
  • 3. Technical Architecture
    • 3.1 AIA Protocol
      • 3.1.1 Protocol Adaptation Layer
      • 3.1.2 Distributed Task Scheduling Engine
      • 3.1.3 Decentralized Communication Network
      • 3.1.4 Cross-layer Data Encryption and Privacy Protection
      • 3.1.5 Dynamic Resource Scheduling and Optimization
    • 3.2 Distributed AI Acceleration
      • 3.2.1 Edge Node Computing Optimization
      • 3.2.2 Multi-Node Distributed Execution
      • 3.2.3 Privacy-Preserving Collaborative Training
    • 3.3 Decentralized Identity and Access Management
      • 3.3.1 Identity Verification and Access Level Grading
      • 3.3.2 Multi-level Data Protection
  • 4. Application Scenario
    • 4.1 Smart Healthcare and Health Management
    • 4.2 Autonomous Driving and Intelligent Transportation
    • 4.3 Agricultural Internet of Things and Precision Agriculture
    • 4.4 Industrial Automation and Intelligent Manufacturing
    • 4.5 Smart City and Public Services
    • 4.6 Edge Computing and Distributed AI
  • 5. IoE Web3 Ecosystem Construction
    • 5.1 DID Physical Nodes
      • 5.1.1 Types of Smart SIM Cards
      • 5.1.2 Rights of DID Physical Nodes
    • 5.2 MVNO Integration
    • 5.3 Ecosystem Incentives
  • 6. Tokenomics
    • 6.1 Token Distribution
    • 6.2 AST Token Use Cases
  • 7.Roadmap
Powered by GitBook
On this page
  1. 3. Technical Architecture
  2. 3.1 AIA Protocol

3.1.3 Decentralized Communication Network

AISim constructs a decentralized communication network based on P2P, aiming to achieve high reliability and low latency in data transmission. By adopting adaptive routing algorithms, AISim can dynamically optimize data transmission paths according to network conditions and node status, ensuring the efficiency and stability of data transmission in the highly distributed IoE environment. The decentralized network avoids the risk of single-point failures, enhancing the system's fault tolerance.

Previous3.1.2 Distributed Task Scheduling EngineNext3.1.4 Cross-layer Data Encryption and Privacy Protection

Last updated 4 months ago