AISim
  • 1. Market Background
    • 1.1 Development Prospects
    • 1.2 Potential Challenges
  • 2. AISim: The World’s First Web3 IoE Network
    • 2.1 AIA Protocol (AISim Intelligent Access Protocol)
    • 2.2 Decentralized Identity Authentication (DID) System
    • 2.3 Distributed AI Acceleration Engine
    • 2.4 Intelligent Privacy Computing Module
    • 2.5 DeAI Client (Decentralized AI Client)
    • 2.6 IoE Data Management and Intelligent Caching System
  • 3. Technical Architecture
    • 3.1 AIA Protocol
      • 3.1.1 Protocol Adaptation Layer
      • 3.1.2 Distributed Task Scheduling Engine
      • 3.1.3 Decentralized Communication Network
      • 3.1.4 Cross-layer Data Encryption and Privacy Protection
      • 3.1.5 Dynamic Resource Scheduling and Optimization
    • 3.2 Distributed AI Acceleration
      • 3.2.1 Edge Node Computing Optimization
      • 3.2.2 Multi-Node Distributed Execution
      • 3.2.3 Privacy-Preserving Collaborative Training
    • 3.3 Decentralized Identity and Access Management
      • 3.3.1 Identity Verification and Access Level Grading
      • 3.3.2 Multi-level Data Protection
  • 4. Application Scenario
    • 4.1 Smart Healthcare and Health Management
    • 4.2 Autonomous Driving and Intelligent Transportation
    • 4.3 Agricultural Internet of Things and Precision Agriculture
    • 4.4 Industrial Automation and Intelligent Manufacturing
    • 4.5 Smart City and Public Services
    • 4.6 Edge Computing and Distributed AI
  • 5. IoE Web3 Ecosystem Construction
    • 5.1 DID Physical Nodes
      • 5.1.1 Types of Smart SIM Cards
      • 5.1.2 Rights of DID Physical Nodes
    • 5.2 MVNO Integration
    • 5.3 Ecosystem Incentives
  • 6. Tokenomics
    • 6.1 Token Distribution
    • 6.2 AST Token Use Cases
  • 7.Roadmap
Powered by GitBook
On this page
  1. 4. Application Scenario

4.6 Edge Computing and Distributed AI

AISim's application in edge computing mainly involves deploying lightweight AI models at edge nodes to provide low-latency, high-efficiency real-time computing support. Since these edge nodes process data locally, they can reduce the latency brought by traditional cloud computing, ensuring that tasks such as autonomous driving and smart medical care can respond in real-time, improving the overall efficiency of the system.

Privacy-protected distributed training is another highlight of AISim in edge computing. AI Agents collaborate to train models on multiple devices using federated learning and other technologies without directly exchanging sensitive data. This not only protects user privacy but also ensures the security of data during distributed training.

AISim's AI Agents also support dynamic task allocation. Based on the current network status and task priority, AI Agents can intelligently distribute computing tasks between edge nodes and the cloud. When network load is low, tasks can be allocated to the cloud; during network congestion, tasks are prioritized for processing by edge nodes, ensuring efficient task execution.

Previous4.5 Smart City and Public ServicesNext5. IoE Web3 Ecosystem Construction

Last updated 4 months ago