AISim
  • 1. Market Background
    • 1.1 Development Prospects
    • 1.2 Potential Challenges
  • 2. AISim: The World’s First Web3 IoE Network
    • 2.1 AIA Protocol (AISim Intelligent Access Protocol)
    • 2.2 Decentralized Identity Authentication (DID) System
    • 2.3 Distributed AI Acceleration Engine
    • 2.4 Intelligent Privacy Computing Module
    • 2.5 DeAI Client (Decentralized AI Client)
    • 2.6 IoE Data Management and Intelligent Caching System
  • 3. Technical Architecture
    • 3.1 AIA Protocol
      • 3.1.1 Protocol Adaptation Layer
      • 3.1.2 Distributed Task Scheduling Engine
      • 3.1.3 Decentralized Communication Network
      • 3.1.4 Cross-layer Data Encryption and Privacy Protection
      • 3.1.5 Dynamic Resource Scheduling and Optimization
    • 3.2 Distributed AI Acceleration
      • 3.2.1 Edge Node Computing Optimization
      • 3.2.2 Multi-Node Distributed Execution
      • 3.2.3 Privacy-Preserving Collaborative Training
    • 3.3 Decentralized Identity and Access Management
      • 3.3.1 Identity Verification and Access Level Grading
      • 3.3.2 Multi-level Data Protection
  • 4. Application Scenario
    • 4.1 Smart Healthcare and Health Management
    • 4.2 Autonomous Driving and Intelligent Transportation
    • 4.3 Agricultural Internet of Things and Precision Agriculture
    • 4.4 Industrial Automation and Intelligent Manufacturing
    • 4.5 Smart City and Public Services
    • 4.6 Edge Computing and Distributed AI
  • 5. IoE Web3 Ecosystem Construction
    • 5.1 DID Physical Nodes
      • 5.1.1 Types of Smart SIM Cards
      • 5.1.2 Rights of DID Physical Nodes
    • 5.2 MVNO Integration
    • 5.3 Ecosystem Incentives
  • 6. Tokenomics
    • 6.1 Token Distribution
    • 6.2 AST Token Use Cases
  • 7.Roadmap
Powered by GitBook
On this page
  1. 4. Application Scenario

4.4 Industrial Automation and Intelligent Manufacturing

In the field of industrial automation, AISim's AI Agents can monitor machine status in real-time through IoE devices, predicting potential equipment failures. By continuously analyzing equipment data, AI Agents provide early warnings, enabling companies to perform maintenance or replace parts in advance, thus reducing downtime and production losses.

In dynamic production scheduling, AISim's AI Agents automatically optimize production plans by analyzing real-time order demands and production capabilities. This technology can adjust production rhythms based on production resources and order changes, enhancing the efficiency and flexibility of production lines, and ensuring timely delivery.

Additionally, AI Agents play a significant role in safety monitoring. The AISim system can detect potential hazards in the factory environment by analyzing sensor data, such as equipment overheating or gas leaks. When AI Agents detect anomalies, they immediately alert workers and management, effectively preventing the occurrence of safety accidents.

Previous4.3 Agricultural Internet of Things and Precision AgricultureNext4.5 Smart City and Public Services

Last updated 4 months ago